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We consider essentially the two-band Hubbard-type model of a nonmagnetic semiconductor
studied recently by Falicov and Kimball (FK), but we allow the bandwidth A, of the valence
band to be nonzero and the Coulomb repulsion Uy; between holes to be noninfinite. FK treated
this model in an approximation based to some extent on the free-energy variational principle,
and they used one-electron wave functions which are localized (Wannier) functions for the va-
lence band, and extended (Bloch) functions for the conduction band. This problem is formu-
lated within the framework of the recently introduced thermal single-determinant approxima-
tion. The limit Uyy— =, A,— 0 then provides a strictly variational derivation of the FK results.
We then show that for A ,= 0, Uy < », and temperature sufficiently small (T <T,), a lower
free energy is obtained when valence-band Bloch functions are substituted for the Wannier func-
tions. That T, can be appreciable even when Uy;/A ,> 1 and the possibility of a transition to
the localized picture at T are pointed out. It is shown that magnetic inelastic neutron scattering
(arising from the magnetic dipolar interaction between neutrons and electrons) can distinguish,

at least in principle, between the extended and the localized pictures.

The fact that band gaps

occur in the thermal-neutron range for interesting materials is noted.

I. INTRODUCTION

Recently Falicov and co-workers!'? considered
semiconductor-to-metal transitions in a system
with a narrow valence band and a broad conduction
band which, respectively, are filled and empty at
low temperatures. Coulomb interactions U,; were
considered to be very large between holes in the
valence band—so much larger than the width 4, of
the valence band that it was argued that the holes
should be considered as spatially localized, the
limit U,; - < being taken. Their further develop-
ment of the properties of this system was based
in part on the minimum-free-energy principle. In
the present paper we shall show that if A, is non-
zero and Uy, is finite, then a lower free energy is
obtained when the localized hole states in the
treatment of Falicov and Kimball (FK) are re-
placed by spatially extended states, at sufficiently
low temperatures. Hence, by the motivation of
minimizing the free energy, used by FK, this ex-
tended picture is preferable to that of FK in this
temperature range. Furthermore, it is found that
the latter range can be appreciable even when
Uy /A,>1; the possibility of a transition to the
localized picture at higher temperature is also dis-
cussed.

The technique we use, which provides incidentally
a strictly variational derivation of the FK results,
is the recently introduced thermal single-determi-
nant approximation.>* The greater generality of
this technique over the usual Hartree-Fock (HF) or
mean-field approximation is essential here since
in the latter the localized picture would never give
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a lower free energy than the extended state, as can
be shown from simple symmetry considerations.
The scattering cross section for inelastic magnetic
neutron scattering is calculated and discussed as
a means, at least in principle, of distinguishing
between the localized-hole and extended-hole pic-
tures.

The Hamiltonian we consider is

1
H= Z; €k Buiy aviu+2 U, Ny Ny,

vio iv

+U12?N“N2, . (1)
Here v runs over 1 and 2, v=1 labels the valence
or hole band, and v=2 refers to the conduction
band a;, creating an electron in a Bloch function
of band v, wave vector k, and spin 0; N,;o=b1:1b,i0
where b};, creates an electron in a Wannier func-
tion for band v at crystal site ¢, and N,;=N,;,+N,;,.
We consider the case of two electrons per site,

<N1i>+<N2()=2» 2)

the brackets indicating a thermal average, and
choose, with FX, U,;,=0. N, will denote the num-
ber of sites 7.

Equation (1) is identified, within a constant, to
FK’s Hamiltonian [their Eq. (1) plus the contribu-
tions from their (3) and (6)] provided we put €,;
=€y(k)—-2Uy,, €3=—F - Uy, consider only one con-
duction band (v=2), and make the identifications
U1 =Gy, U;3=-G4(=G). At this stage FK take the
limit U,; -, projecting out all states with two va-
lence-band holes on the same site. They then treat
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the remaining statistical problem in a self-consis-
tent-field approximation, where the interband term
(< U,,) is simply replaced by an average (‘mean-
field”) value. They then calculate a “free energy”
F which they proceed to minimize to determine
physical properties. But it was not shown that &

is an upper bound to the exact free energy corre-
sponding to the model Hamiltonian being considered,
so that FK’s procedure of minimizing & has no ap-
parent justification. Furthermore, in the case we
wish to consider (finite U,;, nonzero bandwidth of
the valence band), the same “mean-field” approxi-
mation consistently applied to the U;; term in addi-
tion to the U, term would lead to the standard ther-
mal Hartree-Fock approximation, ° no localization
then occurring. Hence we shall follow another
course, discussed in Sec. II.

II. GENERAL THEORY: REDUCTION TO FK RESULT

We will use explicitly the well-known variational
principle®’®

A(p)=trpH +kTtrpInp= A yace(p) , (3)
where A 4,.¢ is the exact Helmholtz free energy
Aggact= LN = BT Intre-8H-+8) 4)

p is any density matrix, the trace is taken over a
complete set of eigenstates of H (so N varies from
0 to 4N,), N is the average N, and pu is the chemi-
cal potential.

A class of p’s that conforms to FK’s physical
picture of localized valence electrons and spatially
extended conduction electrons is defined by

Hige= Uy 23 Nyg Ny, +Zw1N1i +20 Wagnags,  (5)
1 1 ko

with the density matrix defined thereby as

ploc:e'“ﬂlm‘“"’/tre'B‘HIOC'“") (6)

(2is = B35 G255). In (5) w, and w,; are real “one-
electron energy” parameters, to be varied to min-
imize A (p;,.) Subject to

N=trp;,ocN=2N, . (1)
The first two terms of (5) lead to the localized de-
scription of band 1, the last term giving the ex-
tended description of band 2. This is true because
a complete set of eigenstates of (5) (the approxi-
mate energy eigenstates in this picture) is the set
of single Slater determinants in which valence-
band Wannier functions and conduction-band Bloch
functions are occupied in all possible ways. The
choice (5) is a special case of the thermal single-
determinant approximation®*; there, H is allowed
to be a general function of occupation numbers N,
corresponding to some complete orthonormal set
of one-electron states ,, the general variational
equations determining A and the ¥, having been
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obtained. ®* But for our present purposes it is
sufficient to consider the choice (5) and, below,
one other choice leading to an extended description
of both bands.

Using (5) and (6), (3) gives (with (N; Ny;)
=trpyocN1i Nai)

A(ploc):z (€25— wai+#)ﬁzia+2 Oii—wy+ 1Ny,

ko io
+U122 <N1i}v2i>_kT1nZ ) (8)
i

where

biy=(1/N)D; e ¥ Rise g, (9)
ﬁ,-,- connects sites 7 and j ,

@-EtrplocQ , (10)

and Z is the denominator in (6).
(5), we see that

With the help of

(Nn'Nzi}:Nuﬁzi , (11)

Moo= €21 1) = flwge) (12)

Niio= (c +x%e7BU11)/ (1 + 2x +x%e~BV11Y | (13)
where

xze-e(wl-u) . (14)

We also have

Z:z”dUz;, (15)
ko
where
z2=1+2x+x2e™U11 (16)

zg=1+e™Bw2i) 17)

Using (2) plus the fact that N,;, is independent of io
and 71, is independent of 0, we have

Niyo=1-3n (18)
where
n=(1/N)2 ¢ s 19)

the average number of conduction electrons per
site. Thus (13) gives

- [(l_n)2+ (z_n)ne-BU11]1/2+1_n

x ne -PUIL . (20)

We now show that for n <1, (8) reduces to FKX’s
expression for the free energy when, with FK, we
put €3;=¢€,, let U;; - =, and choose wyz=w,. (For
simplicity, we consider only the case presented in
the original FK paper.') We readily see that (8)
is, then,

A(Pro)=Non{€;—kTIn[(2—n)/n]}
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+N,(2=n)®, +kT Inx)

+Ua Ny (2=n)n — BTN, In(1 + 2¢ + x% "8 V11)

+ET(@2N,)In(1- 3n),
|

2-n

As pointed out above, for FK’s original Hamiltonian
and ours to be the same we need here €,=€ - 2U,
and b, =— F - U;;. Hence, dropping a constant (in-
dependent of ), we have

1
A (Pro) =1 (€ +E) = Uppn®

a

+kT[221mm + (2-n)In@-n)+ (1-n)In(1-n)

-nln2-21n2].

Noting FK’s definition A=€ +FE and that the proper
correspondence is U;,=G (as pointed out above),
we see that this expression is identical to FK’s
equation (11) with their m =1, J=3, J =0 (the val-
ues appropriate to the case we are considering). 7
The case n >1 clearly cannot give minimum free
energy in this limit.

Returning to the more general expression (8),
we vary the parameters uy;, w, subject to (2); re-

quiring stationarity of A then gives, after a straight-

forward calculation,

Wai= €5+ U Ny, wy=by+Upn , (21)

where Ny =N;(=2-n)and n=N,;. Using this result
plus (2) and (11)-(19), Eq. (8) gives

1
alocEFA(ploc)
a

=2u-Upn(2-n)-kTIn(1 +2x+x2e"w“)

RT

N 2 In(1 -7, ) .

ko

(22)

+

We shall treat the extended-hole case in the well-
known thermal HF approximation.® In this, one
takes the density matrix to be defined, through
poe™ H4M by H=Fen;, then, being the occupa-
tion numbers for some complete set of one-elec-
tron states. In conformity with the extended pic-
ture, we take the latter to be the Bloch functions
for the two bands of the model of Eq. (1). The free
energy (3), after requiring stationarity under vari-
ation of the €;, in this case can easily be shown
to be
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1 1-
WA(DM)gn(ez_ lenT>+ (2-mn) [‘v, +kT1n <2 "

4
where b,=b;;. From (20), we see that forn <1,
x=~2n"'(1-n)e’"11 as U ~=,
so that
1- 2-n

>+ U,]+Ulan(2—n)—len <4—nzﬁ>-— U11+2kT1 3

|
A(paxt) = ZNa 2 +kTZ_> In(1 _h-via)

vko

- %2 (gyi'v_ Euia);lviu ) (23)

vio

with 72,¢, = f(€,4,) the Fermi-Dirac distribution of
(12) and

€150= €18+ UnNyjo+ Upp Ny

=€+ U (1- %”)*'Ulz",
(24)
€25 = €25+ Uy (2-1m) .

Note that €,5,=w,; [cf. (21)]. Also N,; is now the
average with respect to the HF density matrix, of
course,

III. ASYMPTOTIC BEHAVIOR AT LOW TEMPERATURE

To determine the low-T behavior of @, we first
study ». By definition of the case we are consider-
ing, a semiconductor, n is exponentially small at
low T. Consider the localized case first. From
(19) and (12), it is clear that we then must have, at
zero temperature, the condition y < %wyy,, the min-
imum value of wy;. Then we have

n=0 [e-B(WZmln‘“)] ;
actually one can see that
n =~ ATY? g™ (“2min=s) (25)
if w,g is parabolic about its minimum value, where
A =32 (Q/21°N)2m ,/H2)¥? |

Q/N is the volume per site, and m, is the effective

mass. Now (14) gives

w=w,+kT Inx (26)
and (20) shows that

x=[2(1-n)/n]e® M1 +6), 27

where 6=0(n) where v=n or e®Y11 whichever is
larger. Thus (26) becomes, using (21),

p=by+Un+kTIn[2(1 =n)/n]efY11(1 +6) .
It follows readily, using (25) and (21), that

(28)
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M= %(b1+€2min+2U12+Ull)Eu0: (29)
T-0

so that the exponential dominating » at low T is
Waomin— Ho=2(€amtn=b1+2U15— U11)=3Goe.  (30)

Finally, with the help of (26) and (27), (22) becomes
at low T

Qroc=2by+ Uy - 2kTn + O(T™V2n?) . (31)

In finding the order of magnitude of the correction
in (31) we used the fact that

NI g~ AT 2 ¢~ (Cominmw)
ko
under the same conditions as those used for (25).

We now turn to the extended case. With the help
of the well-known fact that at low temperature

1~ 5[ (€18)max + (€20)mtnl (32)
we obtain again [cf. Eq. (31)]

Coxt =(1/Ng)A (Poxt) =201+ Uy — 2-Tn | (33)
where now at low T

n=0 ¥ ®miruly= g (@ BCext/2) (34)

The effective gap at low temperature in this Bloch-
wave HF approximation is, from (32) and (24) and
(34),

Goxt= (€28)min=— (€18)max+ 2U12—~ Uy . (35)
Comparing with (30), we see that
Gloc—Goxt:(eli)mn—bl>o [} (36)

the last inequality holding when the bandwidth A,
of band 1 is not zero, since b, is the average N;!
XYi€1z. Hence ngyy >n, for T #0. So we have the
required result

G‘oxt < G’loc (37)

for A,+#0, U, finite, and T sufficiently small.

This result is very reasonable on the general
grounds that at low enough 7, there are so few
holes present that the probability of finding two on
one site is negligible even in the extended picture,
so that a large Uy, does not hurt the extended pic-
ture seriously.

IV. POSSIBLE TRANSITION FROM EXTENDED TO
LOCALIZED STATES

There remains the possibility that the localized
picture becomes preferred over this extended pic-
ture at T >some temperature 7, in which case a
change in the nature of the excitations with increas-
ing T might be expected. In fact, it seems clear
that T not only should exist for large U,,/ A, but
it should approach zero as U;;/A,~ <, keeping (35)
positive.® Thus we should worry whether T, might
be absurdly small whenever FK’s assumption
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U1/ 8,>>1 holds. To show that this is not the case,
we shall calculate the free energies for both states,
assuming parameter values that are consistent with
FK’s assumption. For simplicity we will consider
low T, i.e., BT < either bandwidth and the gap.
We will also assume parabolic behavior at the per-
tinent band extrema.

Considering the extended case first, we put (24)
in 7,3, = f(€,4,) and equate the number of electrons
to the number of holes, obtaining for the chemical
potential

et =boxt— i Unifext— 1T In(m,/my) . (38)

Here, m, and m, are the electron and hole masses,
respectively, and

o L
Kext= 2 (€1max + €2min+ 2Us2 + Uyy)

Also, then (25) (which holds for both the extended
and the localized cases) becomes

Mozt ™ Almy/m )4 (e T)%?

X exp{— %B[Gm +3 Uy - 4U12)noxt]} . (39)

Using (28) for p .. in (25) we obtain
Nyoc™ [?‘A (kT)3/2]1/2 eXP[- %B(G loc™ ZUlz" loc)] ’
(40)
G 0c being the zero-temperature gap defined by (30).
To get a very rough idea as to the orders of mag-
nitude that may be involved, we assume the param-
eter values Uy, ~1eV>U;,, A,~0.04 eV, G,:~0.04
eV, m,~ 10 electron masses, m,/m,~20, and Q/N
~30 A’. These are similar to values recently ob-
tained phenomenologically® for Ti,Os; they are
clearly consistent with FK’s assumption that U,
> A,. Considering kT/G 4:=0.1 (T~ 50 °K), and
first neglecting the term in the exponential of (39)
proportional to 7, we find 74~ 10™%; then
$BU 1oy~ 1072, justifying the neglect of the term.
We similarly estimated n,,,, assuming in addi-
tion that in (36) (€;§)max~01~ 34, We found

Mgt /M10c™=3 ,

so that @, <@, fOr these numbers.

Thus we see that the transition temperature would
be >50 °K in this case, and, in fact, might be ap-
preciably higher, T, possibly occurring in a range
where physical transitions are observed (= 500 °K
for Tiy0s).

V. SUMMARY AND DISCUSSION:
INELASTIC MAGNETIC NEUTRON SCATTERING

In summary, Eq. (37) shows that no matter how
large U;, and U,,, the FK picture, which uses local-
ized valence-band states and extended conduction-
band states, is a poorer approximation (in the vari-
ational sense) at sufficiently low T (< T,) than the
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usual HF picture with extended states for both bands.

This result becomes quite plausible on considering
the general physical grounds that at low enough 7,
there are so few holes present that the chances of
finding two on one site is negligible even in the ex-
tended picture. It was shown that the temperature
T, is not expected to be unattainably low even when
U, > 4,, and, in fact, the possibility that 7y might
occur in experimentally interesting ranges was
noted.

It should be pointed out that the behavior found!
in the FK picture is reproduced qualitatively in the
extended picture (which is the usual HF Bloch ap-
proximation). In particular it is possible® within
this HF extended-state picture to describe the in-
teresting type of semiconductor-to-metal transition
discussed by FK! to roughly the same accuracy as
in the FK picture. The type of behavior that would
occur if there is a transition to a localized-hole
picture needs further investigation.

Another possible state is one in which localized
states occur in both bands (a single-determinantal
description of excitons)—this is under considera-
tion.

Finally, we ask the question, is it possible in
principle to distinguish between the simple extended
picture and the localized-hole extended-electron
picture? To this end we calculated the spin-spin
correlation function whose space-time Fourier
transform gives essentially the neutron scattering
cross section. 1® That calculation, summarized in
the Appendix, leads to the following requirements
on the incident and scattered neutron wave vectors
q and q’ (zero T is discussed here for simplicity).
For both pictures we have energy conservation

S €si,— €15, (extended picture)
n? ,
o @ -a"%)= 2

€35, by — Uyy  (localized picture),
(41)

where M is the neutron mass. For the extended
case we find, in addition, the usual crystal momen-
tum conservation

4=0"+ky+k; +k (extended picture) ; 42)

K is 27 times a reciprocal vector and El and Ea are
the wave vectors of the hole and the electron
created in the neutron scattering (k; is minus the
wave vector of the valence-band electron which is
destroyed). But for the localized picture, (42)is
not required (this is quite reasonable, resulting
from the distribution in k of a localized hole).

It can be seen that the scattering in both cases is
spatially diffuse [despite the diffraction condition
(42), the involvement of fwo excitations, electron
and hole, causes this diffuseness]. Nevertheless,
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the existence of (42) for the extended case and its
nonexistence for the localized picture provides an
interesting handle (at least in principle) on dis-
tinguishing these pictures. Consider the “absorp-
tion edge, ” i. e., the minimum neutron energy E ;,
=?q*?/2M for which scattering can occur. For
energies in this neighborhood we need only consider
the neighborhood of the minimum of the conduction
band and the maximum of the valence band, so we
can put

€18, — %ok} 2my 52E2=G+ﬁ25k2/2me )

where GE, are the deviations of the wave vectors

from the respective extrema. Putting

kR2=2MG/n? (43)
(41) becomes

q¥=q%+ k24 0,0k% + a,0k2 (44)

where a,= M /m,and ay=M/m,; m,== for local-

ized holes. Thus from energy conservation alone
E nin would occur for ¢’ =0 and g*=k,. Therefore
E.;,=G (localized holes) (45)

(G being the gap for the localized case, of course).
It is important to note that for “small-gap” semi-
conductors with G a few tens of meV, Eq. (45)
can be satisfied with neutrons in the thermal range.
However (45) is not necessarily the case for ex-
tended holes, since then (42) requires

a*=ﬁw+ﬁzo+1_< , (46)

where ﬁvo are the locations of the band extrema,
which cannot, in general, be satisfied. For exam-
ple, suppose EI(,:Ezo: 0; then there would have to
be a K with magnitude k.. If it can be satisfied (in
our example K, =k;), it will be satisfied only for
certain orientations of the crystal (K, parallel to the
incident neutron beam) so that the scattering can be
turned off or on by rotating the crystal. Another
way of looking at this is that the edge ¢* will de-
pend on crystal orientation, or, again, the scattered
intensity will depend strongly on crystal orientation.
This is in direct contrast to the situation in the
localized case. If (46) cannot be satisfied with
q*=Fk,, the threshold will occur at a higher energy
than G in the extended case, but a similar situation
with respect to crystal rotation will hold.

It is interesting to see that a striking physical
difference between the localized- and extended-hole
pictures is predicted at least in principle, particu-
larly in light of the historically held notion that there
is in principle no possibility of such a distinction
for a “filled-band” semiconductor!! (the error made
historically is that only the minimum-energy deter-
minant is considered; the distinction actually occurs
in the excited states).
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The question of whether this kind of scattering
can be observed in practice is certainly of interest
and is under study. As far as we know, inelastic
magnetic neutron scattering in nonmagnetic semi-
conductors involving excitation of itinerant elec-
trons has not been discussed previously.
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APPENDIX: SPIN-SPIN CORRELATION FUNCTION

The cross section for magnetic scattering of un-
polarized neutrons by the spin magnetic moment of
the electrons is proportional to'°

Sk, w)= [ at [di ety (1), (A1)

where k=q-q’ (see text), — /iw is the neutron ener-
gy change, dr goes over the crystal volume , and

v (T,8)= (1/Q) [ dF’ (S,(¥',0)S,(T' +T,1)) (A2)

is the spin-spin correlation function.
nent of the spin-density operator

S(;) =2i§iop 6

is the component perpendicular to k; for our mod-
els, which are isotropic, (S,(T,0) S,(7’,t)) will be
independent of the component #. The time depen-
dence comes through

S(F, t)=e /" §(T)e tH

The 2 compo-

(T = Tiop) (A3)

(Ad)

We define our spin operators so that the eigenval-
ues of S, are + 3.

The sum in (A3) goes over all the electrons. In
terms of creation and destruction operators b and
b, (A3)is

S(D= (n]so,o —Top)|m)blb
so that for a two-band model the appropriate expres-
sion is

,(1‘ 2 wvi(r) wuj(r)obvio wiv s

vuij

(A5)

where w,; (?) is the Wannier function for band v, site

i, o=+1. These give
vz(t) = [ e Fy(F, t)dT
=% Z 00 <bwobuwbv'i'a (t)bu.'j'o'(t))

vavu
ijoi’j'o’

xe R RRid QU (=R, Ryj) Ly (K, Ryeyr)
(A6)

where l-i, is the position of the ith site, ﬁ,,:ﬁ, - ﬁ,,
and
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1,.(k,R)= [ dF e'®Fw, (F)*w, (F +R) . (A7)

We shall calculate the correlation functions cor-
responding to the extended and the localized states
by using Hamiltonians

Hgxt= ZE: Evi”viu (AB)
vko

and [as in Eq. (5)]
ﬁloc=UlliE NluNuH'Zi; wWNy; +? Waghagy , (A9)

o
-8

respectively, both in the density matrix «<e™ " needed
for the average in (A6) and for the time dependence

s (t)zeiﬁt/hs e-ifit/n

For the extended case the calculation is straight-
forward but lengthy. The Wannier function opera-
tors b,;, are conveniently transformed to the Bloch-
function operators a,;,; use is also made of

avfa(t) =8k € “1tont/n y

well-known for the Hamiltonian (A8). We finally
obtain the function (A1) for the extended case

- 2mh -
Sext(K, w)="2= 27 2 8¢ 5.3, 6 (€ — 5~ )

R R o

X (Mo (1= 1u500)) [ 4, (K, K)[? for 020,  (A10)

where
> - -iE*Rm - >

J,“,(k, K):Em e Iuv(K; Rm)y (All)
also it follows from (A8) that

<nvia(1 —nuf'a)>=f(gvio) [1 - f(éui'o) ]

for vk #pk’ . (A12)

For w=0, one must add a term to (A10) which arises
from purely elastic scattering and which vanishes
at T=0 (we omit it here for simplicity).

The calculation for the localized case is some-
what more complicated, particularly since in (A6)
terms with v=1 have to be treated differently from
those for v=2. Although the general calculation is
not prohibitive, for simplicity we will restrict our-
selves to zero temperature.

The Hamiltonian (A9) clearly implies

azio(t)=azfoe-iw2p/n . (Als)
We also have

byig= G/ M) [Higey brio]=— (/)b 00, +UnNyi),
so that

biiolt)=bys, e WM W1t ULL M)t (A14)

With these relatlons we can readily see that the
zero-T average (b,,,c, - ) in (A6) is zero unless
v=1, u=2 v'=2 p'=1, orv=p=v=p'=1. It
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can be shown that the latter contributes nothing to
¥;(t), so we are left with the former, namely,

<b{lo szabgf‘o' (t)blj'o'(t)>

]-V]; .‘>;‘ eif.ij-ip.ﬁi' (bl'iaaziuaafi'o' (t)blj'a'(t) )
kk’

1 -ife(Rye-R T-wy)t/n
26“'600'&? e ke (Rie-Ry) e““’” wpt

X (1 =Rgge) (Nygq e P11 N1 0t/Ry

— 1 SiE(Ryr-Rj) i (wag-w1-UppIt/n
k

1 ~ife(Rye-R 2by- n
= By qe = 2 @RI i Cegirb Ui,
3

(A15)

[In the last step we used (21).] Thus (A6) gives
1 -ike(Ryr-Ry) 1(eaf-by-U11)t/n

valt) — == e §) gtle2k-b1-U11
( -0 NQ 530 %

-

iRe(R;_Ry0) - =
-1K* - .
e 151 La(= K, Ryj) I (1, Ryvy)

X

-

i (€a5=b1-U11)t/M e > L=
?e' WUV 7 (R, = K) Ty (K= &, K) .
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Using the general relation
Juu(@, K)*=d,,(k+4, ~ k), (A16)

we finally obtain
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- 27 -
Stoel, @) “o ? 6(€,;- by - Uy - hiw)

x| Tk, = R)[2 (A17)

Note that if €,5=b, + Uy, =¢,, then (A10) reduces
to (A17): Using (A16), (A10) then gives

S.,,(Tc, w) — 2k E O¢,
-0 R

-E-k, K

X 8(Egpr - & - Hw) |Jyp(k+7, - 7)|?

_27’}5 . - ~ = > ~\|2
=q gg 51'&-::.1(5(521'—51—'1“’)'*712(1(, K)l

2
Q

= 2 6(&ap - & = hw)|[y5(k, -F)[2 .

0

"

In other words, if the valence-band width is zero,
the zero-T scattering is identical for the two pic-
tures, which is quite reasonable.

Finally, we note that for narrow bands,

J12@, K) > Iy(k, 0)= [ dF e*®F w,(F)*w,(T)

so the form factor is the Fourier transform of the
“charge density” w,(T)*w,(T)—this is reasonable
since the process involved is the excitation of an
electron from the valence to the conduction band.
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